3.3.78 \(\int \frac {1}{(d \csc (a+b x))^{5/2} (c \sec (a+b x))^{5/2}} \, dx\) [278]

3.3.78.1 Optimal result
3.3.78.2 Mathematica [C] (verified)
3.3.78.3 Rubi [A] (verified)
3.3.78.4 Maple [B] (verified)
3.3.78.5 Fricas [F]
3.3.78.6 Sympy [F(-1)]
3.3.78.7 Maxima [F]
3.3.78.8 Giac [F]
3.3.78.9 Mupad [F(-1)]

3.3.78.1 Optimal result

Integrand size = 25, antiderivative size = 135 \[ \int \frac {1}{(d \csc (a+b x))^{5/2} (c \sec (a+b x))^{5/2}} \, dx=-\frac {c}{5 b d (d \csc (a+b x))^{3/2} (c \sec (a+b x))^{7/2}}+\frac {1}{10 b c d (d \csc (a+b x))^{3/2} (c \sec (a+b x))^{3/2}}+\frac {3 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{20 b c^2 d^2 \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}} \]

output
-1/5*c/b/d/(d*csc(b*x+a))^(3/2)/(c*sec(b*x+a))^(7/2)+1/10/b/c/d/(d*csc(b*x 
+a))^(3/2)/(c*sec(b*x+a))^(3/2)-3/20*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4 
*Pi+b*x)*EllipticE(cos(a+1/4*Pi+b*x),2^(1/2))/b/c^2/d^2/(d*csc(b*x+a))^(1/ 
2)/(c*sec(b*x+a))^(1/2)/sin(2*b*x+2*a)^(1/2)
 
3.3.78.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.45 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.67 \[ \int \frac {1}{(d \csc (a+b x))^{5/2} (c \sec (a+b x))^{5/2}} \, dx=\frac {\left (-2 \cos ^2(a+b x) \cos (2 (a+b x))+3 \sqrt [4]{-\cot ^2(a+b x)} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{4},\frac {1}{2},\csc ^2(a+b x)\right )\right ) \sqrt {c \sec (a+b x)}}{20 b c^3 d (d \csc (a+b x))^{3/2}} \]

input
Integrate[1/((d*Csc[a + b*x])^(5/2)*(c*Sec[a + b*x])^(5/2)),x]
 
output
((-2*Cos[a + b*x]^2*Cos[2*(a + b*x)] + 3*(-Cot[a + b*x]^2)^(1/4)*Hypergeom 
etric2F1[-1/2, 1/4, 1/2, Csc[a + b*x]^2])*Sqrt[c*Sec[a + b*x]])/(20*b*c^3* 
d*(d*Csc[a + b*x])^(3/2))
 
3.3.78.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3107, 3042, 3108, 3042, 3110, 3042, 3052, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(c \sec (a+b x))^{5/2} (d \csc (a+b x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(c \sec (a+b x))^{5/2} (d \csc (a+b x))^{5/2}}dx\)

\(\Big \downarrow \) 3107

\(\displaystyle \frac {3 \int \frac {1}{\sqrt {d \csc (a+b x)} (c \sec (a+b x))^{5/2}}dx}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \int \frac {1}{\sqrt {d \csc (a+b x)} (c \sec (a+b x))^{5/2}}dx}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3108

\(\displaystyle \frac {3 \left (\frac {\int \frac {1}{\sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}}dx}{2 c^2}+\frac {d}{3 b c (c \sec (a+b x))^{3/2} (d \csc (a+b x))^{3/2}}\right )}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {\int \frac {1}{\sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}}dx}{2 c^2}+\frac {d}{3 b c (c \sec (a+b x))^{3/2} (d \csc (a+b x))^{3/2}}\right )}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3110

\(\displaystyle \frac {3 \left (\frac {\int \sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)}dx}{2 c^2 \sqrt {c \cos (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)} \sqrt {d \csc (a+b x)}}+\frac {d}{3 b c (c \sec (a+b x))^{3/2} (d \csc (a+b x))^{3/2}}\right )}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {\int \sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)}dx}{2 c^2 \sqrt {c \cos (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)} \sqrt {d \csc (a+b x)}}+\frac {d}{3 b c (c \sec (a+b x))^{3/2} (d \csc (a+b x))^{3/2}}\right )}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3052

\(\displaystyle \frac {3 \left (\frac {\int \sqrt {\sin (2 a+2 b x)}dx}{2 c^2 \sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}+\frac {d}{3 b c (c \sec (a+b x))^{3/2} (d \csc (a+b x))^{3/2}}\right )}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {\int \sqrt {\sin (2 a+2 b x)}dx}{2 c^2 \sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}+\frac {d}{3 b c (c \sec (a+b x))^{3/2} (d \csc (a+b x))^{3/2}}\right )}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {3 \left (\frac {E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{2 b c^2 \sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}+\frac {d}{3 b c (c \sec (a+b x))^{3/2} (d \csc (a+b x))^{3/2}}\right )}{10 d^2}-\frac {c}{5 b d (c \sec (a+b x))^{7/2} (d \csc (a+b x))^{3/2}}\)

input
Int[1/((d*Csc[a + b*x])^(5/2)*(c*Sec[a + b*x])^(5/2)),x]
 
output
-1/5*c/(b*d*(d*Csc[a + b*x])^(3/2)*(c*Sec[a + b*x])^(7/2)) + (3*(d/(3*b*c* 
(d*Csc[a + b*x])^(3/2)*(c*Sec[a + b*x])^(3/2)) + EllipticE[a - Pi/4 + b*x, 
 2]/(2*b*c^2*Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b*x]]*Sqrt[Sin[2*a + 2*b* 
x]])))/(10*d^2)
 

3.3.78.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3052
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]] 
, x_Symbol] :> Simp[Sqrt[a*Sin[e + f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e 
 + 2*f*x]])   Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}, x]
 

rule 3107
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_.), x_Symbol] :> Simp[b*(a*Csc[e + f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1) 
/(a*f*(m + n))), x] + Simp[(m + 1)/(a^2*(m + n))   Int[(a*Csc[e + f*x])^(m 
+ 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] 
&& NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3108
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[(-a)*(a*Csc[e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n + 
 1)/(b*f*(m + n))), x] + Simp[(n + 1)/(b^2*(m + n))   Int[(a*Csc[e + f*x])^ 
m*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, - 
1] && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3110
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(a*Csc[e + f*x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x] 
)^m*(b*Cos[e + f*x])^n   Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n), x], 
 x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/ 
2]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 
3.3.78.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(424\) vs. \(2(140)=280\).

Time = 8.06 (sec) , antiderivative size = 425, normalized size of antiderivative = 3.15

method result size
default \(-\frac {\sqrt {2}\, \left (-4 \cos \left (b x +a \right )^{6} \sqrt {2}+6 \sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticE}\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (b x +a \right )-3 \sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticF}\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right ) \cos \left (b x +a \right )+6 \cos \left (b x +a \right )^{4} \sqrt {2}+6 \sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticE}\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticF}\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right )+\sqrt {2}\, \cos \left (b x +a \right )^{2}-3 \sqrt {2}\, \cos \left (b x +a \right )\right ) \sec \left (b x +a \right ) \csc \left (b x +a \right )}{40 b \sqrt {d \csc \left (b x +a \right )}\, \sqrt {c \sec \left (b x +a \right )}\, c^{2} d^{2}}\) \(425\)

input
int(1/(d*csc(b*x+a))^(5/2)/(c*sec(b*x+a))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/40/b*2^(1/2)*(-4*cos(b*x+a)^6*2^(1/2)+6*(1+csc(b*x+a)-cot(b*x+a))^(1/2) 
*(cot(b*x+a)-csc(b*x+a)+1)^(1/2)*(cot(b*x+a)-csc(b*x+a))^(1/2)*EllipticE(( 
1+csc(b*x+a)-cot(b*x+a))^(1/2),1/2*2^(1/2))*cos(b*x+a)-3*(1+csc(b*x+a)-cot 
(b*x+a))^(1/2)*(cot(b*x+a)-csc(b*x+a)+1)^(1/2)*(cot(b*x+a)-csc(b*x+a))^(1/ 
2)*EllipticF((1+csc(b*x+a)-cot(b*x+a))^(1/2),1/2*2^(1/2))*cos(b*x+a)+6*cos 
(b*x+a)^4*2^(1/2)+6*(1+csc(b*x+a)-cot(b*x+a))^(1/2)*(cot(b*x+a)-csc(b*x+a) 
+1)^(1/2)*(cot(b*x+a)-csc(b*x+a))^(1/2)*EllipticE((1+csc(b*x+a)-cot(b*x+a) 
)^(1/2),1/2*2^(1/2))-3*(1+csc(b*x+a)-cot(b*x+a))^(1/2)*(cot(b*x+a)-csc(b*x 
+a)+1)^(1/2)*(cot(b*x+a)-csc(b*x+a))^(1/2)*EllipticF((1+csc(b*x+a)-cot(b*x 
+a))^(1/2),1/2*2^(1/2))+2^(1/2)*cos(b*x+a)^2-3*2^(1/2)*cos(b*x+a))/(d*csc( 
b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2)/c^2/d^2*sec(b*x+a)*csc(b*x+a)
 
3.3.78.5 Fricas [F]

\[ \int \frac {1}{(d \csc (a+b x))^{5/2} (c \sec (a+b x))^{5/2}} \, dx=\int { \frac {1}{\left (d \csc \left (b x + a\right )\right )^{\frac {5}{2}} \left (c \sec \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/(d*csc(b*x+a))^(5/2)/(c*sec(b*x+a))^(5/2),x, algorithm="fricas 
")
 
output
integral(sqrt(d*csc(b*x + a))*sqrt(c*sec(b*x + a))/(c^3*d^3*csc(b*x + a)^3 
*sec(b*x + a)^3), x)
 
3.3.78.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(d \csc (a+b x))^{5/2} (c \sec (a+b x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(1/(d*csc(b*x+a))**(5/2)/(c*sec(b*x+a))**(5/2),x)
 
output
Timed out
 
3.3.78.7 Maxima [F]

\[ \int \frac {1}{(d \csc (a+b x))^{5/2} (c \sec (a+b x))^{5/2}} \, dx=\int { \frac {1}{\left (d \csc \left (b x + a\right )\right )^{\frac {5}{2}} \left (c \sec \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/(d*csc(b*x+a))^(5/2)/(c*sec(b*x+a))^(5/2),x, algorithm="maxima 
")
 
output
integrate(1/((d*csc(b*x + a))^(5/2)*(c*sec(b*x + a))^(5/2)), x)
 
3.3.78.8 Giac [F]

\[ \int \frac {1}{(d \csc (a+b x))^{5/2} (c \sec (a+b x))^{5/2}} \, dx=\int { \frac {1}{\left (d \csc \left (b x + a\right )\right )^{\frac {5}{2}} \left (c \sec \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/(d*csc(b*x+a))^(5/2)/(c*sec(b*x+a))^(5/2),x, algorithm="giac")
 
output
integrate(1/((d*csc(b*x + a))^(5/2)*(c*sec(b*x + a))^(5/2)), x)
 
3.3.78.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d \csc (a+b x))^{5/2} (c \sec (a+b x))^{5/2}} \, dx=\int \frac {1}{{\left (\frac {c}{\cos \left (a+b\,x\right )}\right )}^{5/2}\,{\left (\frac {d}{\sin \left (a+b\,x\right )}\right )}^{5/2}} \,d x \]

input
int(1/((c/cos(a + b*x))^(5/2)*(d/sin(a + b*x))^(5/2)),x)
 
output
int(1/((c/cos(a + b*x))^(5/2)*(d/sin(a + b*x))^(5/2)), x)